MONDAY, MARCH 18th

DO NOW

- In your notebooks, to be checked, solve this problem...
- There are 3 Oxygen in 1 Aluminum Oxide (Al_2O_3) and 4 Oxygen in 1 Dinitrogen Tetraoxide (N_2O_4) . These are units of Ionic and Covalent Compounds! **Know:**

 $30 = 1Al_2O_3$ $40 = 1N_2O_4$ Asked: How many Dinitrogen Tetraoxide (N_2O_4) can be made with 44 Oxygen Atoms?

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!
 - Today's $\mathbf{QP} = \underline{\text{Using your Jot-Down}}$ <u>Notes, WRITE the names of the</u> <u>following Compounds; Ionic: (CaCl₂, NaCl, KF, LiBr, Na₂C₂, and Na₂O) & <u>Covalent: (N₂O, SO₂, P₂O₃, N₂O₄, <u>As₂O₅, & SF₆)!</u></u></u>
- 2. Open books, WORK on today's AO! 3. *HW = Read & Do Pg. 226-227 & 230-231+ Bring-Ins Lab HW Item!

TODAY'S ACADEMIC OBJECTIVE

Today you will PRACTICE how to use NOMENCLATURE to name Ionic and Covalent COMPOUNDS!

Vocab Lab - Pg. 225 AND Pg. 241 AND Pg. 267 AND Pg. 277

- 1. Students, LISTEN UP UP UP!
 - There are 21 (TWENTY-ONE) vocabulary terms that you MUST define, using the GLOSSARY of your book, to get full HW credit!
 - Be sure to <u>NUMBER</u> your terms for when I come and check them!
 ⁽ⁱ⁾
 - There are **TWO** (2) BONUS Terms not listed that you must also DEFINE!
 - Ion
 - Compound

SCIENCE QUIZ ALERT

• Students, listen UP!!!

Ionic Bond

•DESCRIPTION

Covalent Bond

METALS

- We will be having another VOCALQUIZ soon to help us LEARN how to IDENTIFY and NAME some common Ionic and Covalent Compounds!
- This quiz will require you to STUDY your Jot-Down Notes on Naming Ionic and Covalent Compounds!
- You are responsible for learning the how to IDENTIFY if a Compound is Ionic or Covalent!
 - <u>BONUS Points for also being able to correctly NAME</u> <u>the Compound!</u>

SCIENCE QUIZ ALERT

Simple Ionic Compounds

Let's look at this example: KBr

Name the metal (cation) first

Name the non-metal (anion) next, end it Bromine becomes bromide

Put together: Potassium bromide

prefix

number Naming Covalent Compounds of ato

- -Write the name of the first element.
- -Add a prefix according to the subscript.
 - EXCEPT: if the subscript is 1, don't add a prefix
- -Write the name of the second element (change the ending to -ide)

Add a prefix according to the subscript.

ms			.xumple
	mono	NO	nitrogen monoxide
	di	NO ₂	nitrogen dioxide
	tri	N203	dinitrogen trioxide
	tetra	N ₂ O ₄	dinitrogen tetraoxide
	penta	N205	dinitrogen pentaoxide
	hexa	SF ₆	sulphur hexa fluoride
	hepta	IF7	iodine hepta fluoride
	octa	P4O8	tetra phosphur decoxide
	nona	P4 59	tetra phusphur nona sulphide
	deca	AS OI	tetra arsinic decoxide

avampla

Ionic Bond Naming Rules – Jot This Down!

- To name most "Ionic Compounds", swap out the current ending syllable in the 2nd Element's name for "-ide" and then just put it after the first Element's name!
 - Ex: For NaCl, turn "Chlorine" into "Chloride" and then add it to "Sodium" to make "Sodium" Chloride"!

Al,O,

MgO

Magnesium Oxide

Aluminum Oxide

Nonmetal - Blue

Simple Ionic Compounds Sodium Fluoride Let's look at this example: KBr Ca₃P₂ Name the metal (cation) first **Calcium** Phosphide Potassium Name the non-metal (anion) next, end it with -ide Bromine becomes bromide Put together: Potassium bromide Metal - Red

Covalent Bond Naming Rules – Jot This Down!

- To name many "Covalent Compounds", we still swap out the current ending syllable in the 2nd Element's name for "ide" and then put it after the first Element's name!
 - However, we must ALSO add "Number Prefixes" such as mono-, di-, tri-, tetra-, penta-, and hexa- to the beginning of each Element's name!
 - Ex: For N₂O₃, turn "Oxygen" into "Trioxide" and then add it to "Dinitrogen" to make "Dinitrogen Trioxide"!
 - NOTE: We NEVER add the mono- prefix to the first Element! Ex: CO is Carbon Monoxide, NOT Monocarbon Monoxide!

Naming Covalent Compounds

- Steps
 - -Write the name of the first element.
 - –Add a prefix according to the subscript.
 - EXCEPT: if the subscript is 1, don't add a prefix
 - Write the name of the second element (change the ending to –ide)
 - –Add a prefix according to the subscript.

number of atoms	prefix	e	example
1	mono	NO	nitrogen monoxide
2	di	NO ₂	nitrogen dioxide
3	tri	N2O3	dinitrogen trioxide
4	tetra	N ₂ O ₄	dinitrogen tetraoxide
5	penta	N2O5	dinitrogen pentaoxide
6	hexa	SF ₆	sulphur hexa fluoride
7	hepta	IF ₇	iodine hepta fluoride
8	octa	P4 Og	tetra phosphur decoxide
9	nona	P4 S9	tetra phusphur nona sulphide
10	deca	AS4010	tetra arsinic decoxide

TUESDAY, MARCH 19th

DO NOW

Know: Food is made of Organic Chemicals classified as Macronutrients (Protein/Carb/Fat) or Micronutrients (Vitamins/Minerals).

Asked: What is the **best** reason for including fruits and vegetables in a healthy diet?

A: Some contain Plant Protein

B: Some contain Complex Carbohydrates

C: Most are rich in Micronutrients

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!
 - Today's QP = Imagine that you were only able to eat 1 large meal a day AND that you only had 1 hour to finish it. DESIGN and DRAW a meal that you think you could finish in an hour, would keep you full all day, AND be considered healthy!
- 2. Open books, WORK on today's AO!
- 3. ***HW** = <u>Read & Do Pg. 232-233!</u>

TODAY'S ACADEMIC OBJECTIVE

Today you will INTERACT with Organic Compounds by STUDYING the components of FOOD!

WEDNESDAY, MARCH 20th

DO NOW

- In your notebooks, to be checked, solve this problem...
- There are 15 Oxygen Molecules (O_2) in 30 Water (H_2O) and 9 Water in 1 Octane Molecule (C_8H_{18}) . These are units of Organic Chemistry!

Know:

 $15O_2 = 30H_2O$ $9H_2O = 1C_8H_{18}$ Asked: How much Octane (C_8H_{18}) can be made with 135 molecules of Oxygen (O_2)?

TODAY'S PLAN

1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!

 Today's QP = <u>QP BOOK REVIEW</u> = <u>Using Pg. 230-231 of your book,</u> <u>WRITE what an "Organic</u> <u>Compound" is and then LIST the</u> <u>main Elements that compose them!</u>

2. Open books, WORK on today's AO!
3. *HW = <u>STUDY for Vocal Quiz!</u>

TODAY'S ACADEMIC OBJECTIVE

Today you will INTERACT with Organic Compounds by STUDYING the components of FOOD!

THURSDAY, MARCH 21st

TODAY'S ACADEMIC OBJECTIVE

Today you will RISE UP and conquer the BASICS of Chemical Compound Nomenclature by ACING our latest VOCAL QUIZ!

Bring-In's Lab Steps – Designing An OMAD

- 1. Using all of the foods that you and your classmates BROUGHT IN, you must DESIGN 2 OMAD Meals totaling between 2000 and 2500Cal!
- 2. One meal will be your "Favorite Foods Meal" and the onl requirement is that it must be between 2000 and 2500Cal!
- 3. Your other meal will be your "Healthy Meal" and must thus follow the following **rules**;
 - You MUST follow the FDA's Daily Recommended Intake (**DRI**) for **Fat, Carbs, and Protein** by keeping these values within the "2000-2500Cal" range.
 - You MUST have a balanced meal with AT LEAST ONE food from 4 of the 5 food groups!
- RECORD all of the different foods in your two OMAD Meals and CALCULATE the total number of Calories, Fat, Carbs, Protein, Cholesterol, Sodium, Vitamin A, Vitamin C, Calcium, Iron, Sugars, and Fiber to CREATE a "Nutrition Facts" Label for BOTH of your meals!
- 5. Finally, answer the HW Problems!

Percent Daily Values are based on a 2,000 calorie diet. Your Daily Values may be higher or lower depending on your calorie needs:

	Calories	2,000	2,500	
Total Fat	Less than	65g	80g	
Saturated Fat	Less than	20g	25g	
Cholesterol	Less than	300mg	300mg	
Sodium	Less than	2,400mg	2,400mg	ī
Potassium		3,500mg	3,500mg	
Total Carbohydra	te	300g	375g	8 9
Dietary Fiber		25g	30g	
Protein		50g	65g	3

50g	65g
Profein	Daity
	O

Mo	icronutri	ents

proteins

carbe

fats

Nutrition Facts Serving Size 1 cup (240 mL) Servings Per Container About	+ 16
Amonat Per Serving	10
Calories 90 Calories from	Fat
% Daily V	alue*
Total Fat 0g	0%
Saturated Fat Og	0%
Cholesterol Less than 5mg	1%
Sodium 135mg	6%
Total Carbohydrate 13g	4%
Dietary Fiber Og	0%
Sugars 13g	
Protein 9g	
Vitamin A 10% Vitamin	C 4%
Calcium 30% • Iron 0% • Vitamin f) 25%

Bring-In's Lab Space Setup – Designing AN OMAD

Healthy OMAD Meal

Healthy Meal Foods	# of Servings	Calories (Cal)	Fat (g)	Carbs (g)	Protein (g)	Cholesterol (mg)	Sodium (mg)	Vitamin A (%)	Vitamin C (%)	Calcium (%)	Iron (%)	Fiber (g)	Sugar (g)
Total:													

Favorite Foods OMAD Meal

1.

2.

3.

Favorite	# of	Calories
Meal	Servings	(Cal)
Foods		
Total:		

Bring-In's Lab HW

Organic Chemistry – Jot This Down!

- ORGANIC Chemistry is the study of the CHEMICALS that make up living THINGS!
- There are SIX (6!) main Elements VITAL to life on Earth and thus most abundant in MOS7 living things!
 - CARBON (C), HYDROGEN (H), OXYGEN (O), NITROGEN (N), PHOSPHORUS (P), AND SULFUR (S) AKA CHONPS!
- These Elements are found BONDED inside living things as the FOUR Major
 Biomolecules!
 Calorie Content of Mac Fat: 9 calories per gram
 - Nucleic Acids, Carbohydrates, Proteins, and LIPIDS!
 - The last three are also known as "Macronutrients"!

Bring-In's Lab – HW Problems and Questions
1. DRAW a "Nutrition Facts" Label for your Healthy Meal (You do not need to include Saturated Fat or anything else not included in your tables)!

- 2. What is Organic Chemistry? What are the main Elements found in most Organic Compounds? Are Organic Compounds only found in living things? If not, give an example of one found in something not alive.
- 3. The 4 Major Biomolecules (Proteins, Carbohydrates, Lipids aka Fats, and Nucleic Acids) are examples of Organic Compounds in living things. Which ones are also found in food as "Macronutrients"? Finally, which one do you think has the most "stored energy" and how could you test this?

FRIDAY, MARCH 22nd

DO NOW

• In your notebooks, to be checked, solve this problem...

There are about 4 Joules in 1 calorie, 1000 calories in 1 kilocalorie, and a bit over 860 kilocalories in 1 kilowatt-hour. These are units of Chemical Energy!

Know:

 $\begin{array}{ll} 4J\approx 1cal & 1000cal=1kcal\\ 860kcal\approx 1kWh \end{array}$

Asked: How many kilo-watt hours (kWh) are in 6,880,000 Joules (J)?

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!
 - Today's QP = <u>DESIGN and DRAW a</u> method for measuring the amount of energy (CALORIES!) in a piece of food and then use Pg. 230-233 to LIST the 3 types of ORGANIC Compounds!

2. Open books, WORK on today's AO!

3. ***HW** = <u>Use GOOGLE to define the</u> term "Elementary Particle" AND then give an EXAMPLE of one (not a Quark)!

TODAY'S ACADEMIC OBJECTIVE

Today you will WITNESS how the AMOUNTS of Organic Compounds in food determines their amounts of ENERGY!

Bell 2 Bell

- We work what in this class?!?!?!
 - BELL 2 BELL
- Every single precious SECOND of academic instructional time is thus utilized in this classroom!
- You students will thus be vocally quizzed EVERY DAY until I DISMISS you at the end of class (with a positive greeting and a thank-you of course!).

Bell 2 Bell

- We work **BELL 2 BELL** in Mr. Floyd's class!
- I will thus quiz you about the science we learned today until the very end!
- Let us begin!

SCIENCE Q